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a b s t r a c t

This paper presents an extension of the strong stability analysis in riskmodels using nonparametric kernel
density estimation for the claim amounts. First, we detail the application of the strong stability method
in risk models realized by V. Kalashnikov in 2000. In particular, we investigate the conditions and the
approximation error of the real model, in which the probability distribution of the claim amounts is not
known, by the classical risk model with exponentially distributed claim sizes. Using the nonparametric
approach, we propose different kernel estimators for the density of claim amounts in the real model.
A simulation study is performed to numerically compare between the approximation errors (stability
bounds) obtained using the different proposed kernel densities.
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1. Introduction

In ruin theory, stochastic processes are used to model the sur-
plus of an insurance company and to evaluate its ruin probability,
i.e., the probability that the total amount of claims exceeds its re-
serve. This characteristic is a much studied risk measure in the lit-
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erature. In general, thismeasure in finite and in infinite time is very
difficult or even impossible to evaluate explicitly. Thus, different
approximationmethods have been proposed to estimate this char-
acteristic (see Asmussen and Albrecher, 2010; Grandell, 1990).

We consider throughout this paper the two risk reserve
processes {S(t), t ≥ 0} and {S ′(t), t ≥ 0}which are given by:

S(t) = u+ ct −
N(t)
i=1

Zi, t ≥ 0, (1)
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S ′(t) = u+ ct −
N(t)
i=1

Z ′i , t ≥ 0, (2)

where u ≥ 0 is the initial reserve, c > 0 represents the premium
rate and {N(t), t ≥ 0} is a Poisson process with parameter λ. The
independent and identically distributed random variables of claim
amount {Zi}i∈N∗ and {Z ′i }i∈N∗ have distinct distribution functions F
and F ′.

The question of stability in actuarial risk theory naturally arises
for two principal reasons. First, the parameters that govern the
risk model are obtained using statistical methods. Second, the ruin
probability:

Ψ (u) = P(∃t ≥ 0|S(t) < 0), ∀ u ≥ 0, (3)

cannot be found explicitly. Hence, it is necessary to obtain
explicit stability bounds. The strong stability method, which was
developed by Aissani and Kartashov (1983), makes it possible
to clarify the conditions for which the ruin probability of the
complex risk model (real model) defined by the process (1) can be
approximated by the corresponding ruin probability in the simple
riskmodel (idealmodel) defined by the process (2). In otherwords,
the model defined by the process (2) may be used as a good
approximation or idealization of the real model defined by the
process (1).

With a certain norm ∥ · ∥v , Kalashnikov (2000) presented a new
stability bound for the ruin probability which has the following
form:

∥Ψ − Ψ ′∥v ≤ Π(∥F − F ′∥v, c, λ), (4)

where Π is a function continuous at 0 with Π(0) = 0.
In this sense, further work was done for other models: the

risk model with investment (Rusaityte, 2001), semi-Markov risk
models (Enikeeva et al., 2001) and the two-dimensional classical
risk model (Benouaret and Aissani, 2010).

The strong stability analysis is part of the robustness theory,
i.e., when we do not know exact values of the model parameters
(inputs), it is natural tomeasure the impact of a small perturbation
of the model on the outputs. The influence function, which
was used by Marceau and Rioux (2001), Loisel et al. (2008)
in the sensitivity and robustness analysis of ruin probabilities,
is one of the tools to measure this impact. However, strong
stability is another tool to measure the deviation between the ruin
probabilities. In contrast to the influence function, this technique
based on the disturbance of a linear operator permits us to
investigate the ergodicity and the stability of the stationary and
non-stationary characteristics of Markov chains (see Aissani and
Kartashov, 1984).

There is an alternative method for computing the bounds on
the perturbations of Markov chains closely related to the strong
stability approach which is the series expansion approach for
Markov chains (see Hamoudi et al., 2014). In contrast to the
strong stability method, the series expansion approach requires
numerical computation of the deviation matrix, which limits the
approach toMarkov chainswith a finite state space (seeHeidergott
et al., 2010,b).

For a theoretical study, different probability laws can be used to
model the amount of claims. In practice, the determination of these
probability distributions requires the use of functional estimation
techniques (see Bareche and Aissani, 2008, 2010; Zhang et al.,
2014). Our contribution in this work is to use the nonparametric
estimation of the claim amounts in the strong stability analysis of
the ruin probabilities. Assume that the law of the claim amounts is
exponential in the ideal risk model described by the process S ′(t)
and the law of the claim amounts is general in the real risk model
described by the process S(t). We clarify, using the strong stability
method, the conditions for approximating ruin probabilities Ψ by
Ψ ′ andwe estimate the error of this approximation given in bound
(4).

This paper is organized as follows: in Section 2, we give
the basics of strong stability method applied to the classical
risk models. In Section 3, we present some kernels proposed in
nonparametric estimation of the density of claim amounts. The
main results of this paper are presented andnumerically illustrated
in Section 4.

2. Preliminaries and position of the problem

In this section, we present some necessary notations, the
basic theorems of the strong stability method and the theoretical
results obtained by applying this method in the risk models
(see Kartashov, 1996; Kalashnikov, 2000; Benouaret and Aissani,
2010).

2.1. The strong stability criteria

We denote by mε the space of finite measures on the
probabilizable space (E, ε), and we introduce the special family of
norms defined by:

∥m∥v =

E
v(x)|m|(dx), ∀m ∈ mε, (5)

where v is ameasurable function that is bounded below away from
zero (not necessarily finite).

This norm induces, in the space f ε of bounded measurable
functions on E, the norm:

∥f ∥v = sup{|mf |, ∥mf ∥v ≤ 1} = sup
x∈E
[v(x)]−1|f (x)|, ∀ f ∈ f ε.(6)

The norm of the transition kernel P in the space β is given as
follows:

∥P∥v = sup
x∈E


[v(x)]−1


E
v(y)|P(x, dy)|


, (7)

where β is the space of linear operators.

Definition 2.1 (see Aissani and Kartashov, 1983)). The Markov
chain X with transition kernel P and stationary distribution π
is said to be v-strongly stable with respect to the norm ∥.∥v if
∥P∥v < ∞ and each stochastic kernel Q in the neighborhood
{Q : ∥Q − P∥v < ϵ} has a unique invariant measure π ′ = π ′(Q )
and ∥π − π ′∥v → 0 as ∥Q − P∥v → 0.

The following theorem was proved by Kartashov (1996) and was
applied in a risk model with one line of business by Kalashnikov
(2000).

Theorem 2.1. Let v be a fixed weight function. Consider a Markov
chain with transition kernel P, such as ∥P∥v < ∞, and that has a
unique stationary distribution π . Additionally, suppose that there is a
non-negative function h and a probability measure α such that P can
be decomposed as follows:

P(u, ·) = T (u, ·)+ h(u) α(·), (8)

where

∥π∥h > 0, ∥α∥h > 0, (9)

and

∥T∥v ≤ ρ < 1. (10)

Then, all Markov chains with transition kernel P ′ that satisfies:

∆ = ∥P − P ′∥v < ∆0 ≡
(1− ρ)2

1− ρ + ρ ∥α∥v
, (11)
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have a unique stationary distribution π ′, and furthermore,

∥π − π ′∥v ≤
∆∥α∥v

(1− ρ)(∆0 −∆)
. (12)

2.2. The strong stability of the classical risk model

From applying the qualitative aspect of the strong stability
method, we have the strong stability of the classical risk model,
which means that a small deviation of its parameters leads to a
small deviation of its characteristics (see Benouaret and Aissani,
2010).

In this part, we use the quantitative aspect of the strong stability
method to estimate the approximation error of the real risk model
by the classical risk model.

Denote by a = (λ, c, F) (respectively a′ = (λ′, c ′, F ′)) the
vector parameter of the real risk model (respectively of the ideal
risk model).

The estimation of the transition kernel deviation, obtained by
Kalashnikov, is given by the following formula:

∥P − P ′∥v ≤ 2 E eϵZ
ln λc ′

λ′c

+ ∥F − F ′∥v. (13)

Under the following condition, which represents the perturbation
domain of the parameters,

u(a, a′) ≤ (1− ρ)2, (14)

where

u(a, a′) = 2 E eϵZ
ln λc ′

λ′c

+ ∥F − F ′∥v, (15)

we have the following strong stability inequality:

∥Ψ − Ψ ′∥v ≤
µ(a, a′)

(1− ρ)

(1− ρ)2 − µ(a, a′)

 , (16)

where ρ(ϵ) = E exp(ϵ(Z − c θ)) and θ is a random variable that
represents the inter-arrival of claims.

Denote by Γ the upper bound given by the inequality (16),

Γ =
µ(a, a′)

(1− ρ)

(1− ρ)2 − µ(a, a′)

 . (17)

Specific case: Perturbation of the claim sizes
In our study, we take into consideration only the perturbation

of claim amounts. The other parameters, λ and c , are the same for
both models (ideal and real).

In this case, the transition kernel deviation given by the
inequality (13) becomes:

∥P − P ′∥v ≤ ∥F − Eµ∥v, (18)

where F is the unknown distribution of the claim amounts in the
real model and Eµ is the exponential distribution of the claim
amounts in the ideal model.

Therefore, we obtain the following bound of stability:

∥Ψ − Ψ ′∥v ≤
∥F − Eµ∥v

(1− ρ)

(1− ρ)2 − ∥F − Eµ∥v

 . (19)

Since the distribution of the claim sizes F is unknown, its density
function must be approximated using the nonparametric density
estimation.
3. Kernel density estimation of the claim amount

The kernel density method is much commonly used in the
nonparametric estimation methods. Thus, when we have an
independent and identically distributed sample X1, . . . , Xn coming
from a random variable X with an unknown probability density
function f onℜ ⊆ R, the associated kernel estimators, asymmetric
and continuous, have the following form:

fh(x) =
1
n

n
i=1

Kx,h(Xi), (20)

where h is the smoothing parameter and Kx,h is the asymmetric
kernel.

3.1. The choice of kernel

The density function of the claim amounts is defined on a
bounded support. In order to avoid the problem of boundary
effects, due to the use of symmetric kernel (see Bareche and
Aissani, 2010), we use the following asymmetric kernel, which
never assigns a weight out of the support.

3.1.1. Modified gamma kernel
The Gamma kernel estimator was introduced by Chen (2000)

for a probability density function that has a bounded support on
ℜ = [0,∞[.

Two classes of kernels have been proposed:

KGAM( x
h+1,h)

(u) =
u

x
h exp


−u
h


h

x
h+1Γ

 x
h + 1

 , (21)

where Γ (α) =

∞

0 exp(−t)tα−1dt , and the associated estimator
is given as follows:

f GAMh (x) =
1
n

n
i=1

K x
h+1,h

(Xi). (22)

The second class is the modified Gamma kernel, which is given as
follows:

KGAM1(ρh(x),h)(u) =
uρh(x)−1 exp


−u
h


hρh(x)Γ (ρh(x))

, (23)

where

ρh(x) =


x
h

if x ≥ 2h,
1
4

 x
h

2
+ 1 if 0 ≤ x < 2h.

(24)

The estimator with a Gamma-modified kernel is given by:

f GAM1
h (x) =

1
n

n
i=1

Kρh(x),h(Xi). (25)

Malec and Schienle (2012) proposed an improvement for the
function ρh.

ρ1
h (x) =




1
4

 x
hr

2
+ 1


[r + 2h(1− r)] si 0 ≤ x < 2hr,

x
hr

(r + 2h− x) si 2hr ≤ x < 2h,
x
h

si x ≥ 2h,

(26)

where r ∈]0, 1] and for r = 1, we return to the standard Gamma
kernel.

The new estimator with a Gamma kernel is given as follows:

f GAM2
h (x) =

1
n

n
i=1

K(ρ1
h (x),h)(Xi). (27)
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3.1.2. Reciprocal inverse Gaussian kernel
To realize a comparison with the Gamma kernel, we use the

reciprocal inverse Gaussian kernel (RIG) (see Scaillet, 2004), which
has the following form:

K
RIG


1

x−h , 1h

(u)
=

1
√
2πhu

exp

−(x− h)

2h


u

x− h
− 2+

x− h
u


(28)

and its associated estimator is given by the following equation:

f RIGh (x) =
1
n

n
i=1

K
RIG


1

x−h , 1h

(Xi). (29)

3.2. The choice of the smoothing parameter

In the literature, several methods to select the parameter
have been proposed. The first class of methods, called plug-in,
was proposed by Woodroof (1970). The second class, based on
cross-validation, was proposed by Hermans et al. (1974). Another
method using the Bayesian approach (see Zougab et al., 2013), is
applied when the sample size is moderate.

In this work, the smoothing parameter h is chosen to minimize
the criterion of the least squares cross-validation (see Rudemo,
1982; Bowman, 1984). The optimal smoothing parameter is
obtained as follows:

hucv = arg min
h

UCV (h), (30)

where

UCV (h) =


R
f 2h (x)dx−

2
n

n
i=1

fh,i(Xi),

with

fh,i(Xi) =
1

(n− 1)h

n
j=1,j≠i

K(Xi,h)(Xj).

4. Numerical evaluation for the strong stability bound

In this section, we want to apply the kernel density method
to numerically estimate the approximation error between the
proposed models by evaluating the bound of the transition kernel
deviation given in (18) and the bound of the ruin probability
deviation given in (19).

For this purpose, we develop an algorithm that contains the
following steps:

4.1. Algorithm

1. Generate a sample of size n from a general distribution of the
claim amounts;

2. Use the different kernels given in Section 3 to estimate the
density function f by fh;

3. Introduce the average arrival rate of the claims λ and the
premium rate c;

4. Evaluate the average claim amount µ←

∞

0 xfh(x);
5. Verify if c > λµ, otherwise, the ruin is certain;
6. Determine the field of ϵ, such as ϵmin < ϵ < ϵmax, where ϵmin

(respectively ϵmax) is the smallest value (respectively the largest
value), which verifies the two following conditions:

0 < ϵ < min

1
µ

,
c − λµ

cu


and u(a, a′) < (1− ρ(ϵ))2;

7. Determine the approximation error Γ =
u(a,a′)

(1−ρ)((1−ρ)2−u(a,a′))
.

Fig. 1. Theoretical density f1(Cox(2, 3, 0.05)) and exponential density.

4.2. Numerical examples

For this numerical study, we generate a sample of size n from
a general distribution of the claim amounts to be able to estimate
the probability density fh using the kernel density method. In this
numerical example, the general distributions considered are the
Cox law (Cox2(µ1 = 2, µ2 = 3, α = 0.05)) and the Weibull
law (Weibull(δ = 1.2, β = 2)), whose densities are, respectively,
given as follows:

f1(x) =


(1− α)µ1e−µ1x +

αµ2

µ2 − µ1
µ1e−µ1x

+
αµ1

µ1 − µ2
µ2e−µ2x if x ≥ 0 and µ1 ≠ µ2;

(1− α)µ1e−µ1x + αµ1e−µ1x if x ≥ 0 and µ1 = µ2;

0 otherwise

and

f2(x) =


δβxδ−1e−βxδ if x > 0;

0 otherwise.

For the two models (ideal and real), we fix the average arrival
rate of claims λ = 0.1, the premium rate c = 5, the sample size
n = 200 and the number of simulations R = 100.

Using the environment MATLAB 7.4 (R2007a), the results of
this simulation are presented in Tables 1 and 2. The curve of
the theoretical density f1 (respectively f2) and the curve of the
exponential density are presented in Fig. 1 (respectively in Fig. 3).

The curve of the theoretical density f1 (respectively f2) and the
estimated densities are given in Fig. 2(respectively in Fig. 4).

Discussion. From Fig. 1, we observe that the density curve of
the ideal model is closer to the curve of the theoretical density
compared to those in Fig. 3. In other words, the perturbation of the
ideal model (perturbation of claim amounts) in the first case (with
density f 1 Cox(2, 3, 0.05)) is smaller than the perturbation of the
ideal model in the second case (with density f 2 Weibull(1.2, 2)).

In Table 1, we observe that the approximation error for the ruin
probabilities of the real and ideal models using the estimator with
the GAM2 kernel (Γ = 0.0404) is the closest to the one obtained
using the theoretical density f1 (Γ = 0.0171).

However, in Table 2, the approximation error using the
theoretical density f2 (Γ = 0.3337) is higher than those obtained
using the GAM kernel estimator (Γ = 0.2816).

4.3. Variation of error Γ in function of ϵ

The evolution of the error Γ in function of the norm
parameter ϵ with theoretical densities f1(Cox(2, 3, 0.05)) and
f2(Weibull(1.2, 2)) are presented in Fig. 5.
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Table 1
Strong stability bound of ruin probability with different estimators and with theoretical density f1 .

f1 f GAM1h f GAM1
1h f GAM2

1h f RIG1h

Mean claim amount µ 0.5145 0.4973 0.5193 0.5146 0.5079
0 < ϵ < min{ 1

µ
,

c−λµ

cµ } ]0, 1.9237[ ]0, 1.9907[ ]0, 1.9056[ ]0, 1.9232[ ]0, 1.9489[
∥F1 − E 1

µ
∥v 0.0133 0.0376 0.0342 0.0309 0.0358

Γ 0.0171 0.0495 0.0424 0.0404 0.0470
Table 2
Strong stability bound of ruin probability with different estimators and with theoretical density f2 .

f2 f GAM2h f GAM1
2h f GAM2

2h f RIG2h

Mean claim amount µ 0.5268 0.5280 0.5479 0.5479 0.5381
0 < ϵ < min{ 1

µ
,

c−λµ

cµ } ]0, 1.8784[ ]0, 1.8741[ ]0, 1.8051[ ]0, 1.8052[ ]0, 1.8385[
∥F2 − E 1

µ
∥v 0.1986 0.1739 0.1978 0.2005 0.2038

Γ 0.3337 0.2816 0.3359 0.3418 0.3457
Fig. 2. Theoretical density f1(Cox(2, 3, 0.05)) and its estimated densities.
Fig. 3. Theoretical density f2(Weibull(1.2, 2)) and exponential density.

Fig. 6 (respectively Fig. 7) describes the evolution of the error
Γ in function of ϵ with theoretical density f1(Cox(2, 3, 0.05))
(respectively f2(Weibull(1.2, 2))) and with its estimated densities.

Discussion. Note, according to Fig. 5 with theoretical density
f1(Cox(2, 3, 0.05)) (resp. f2(Weibull(1.2, 2))), that the error, being
important at the start, decreases speedily for the values of ϵ in the
neighborhood of the lower bound. This may be explained by the
fact that they are at the boundary of the stability domain (criti-
cal region). We notice also that the error increases speedily in the
neighborhood of the upper bound (critical region). In contrast, ev-
erywhere else, the error increases reasonably with the values of ϵ.

5. Conclusion

In this work, we have developed a nonparametric study in
the strong stability analysis of the classical risk model. For this
purpose, we have exploited four types of kernels to estimate the
unknown probability distribution of the claim amounts, and we
have determined the strong stability bound of the ruin probability
with each kernel.

From the realized simulation approach, the obtained numerical
results are significant to the concept of the strong stabilitymethod,
where for a small deviation of the parameters, we have a small
deviation of the characteristics (ruin probability).

Moreover, compared to the stability bounds obtained with the
theoretical density, we conclude that if the perturbation is very
small, we can decide about the numerical comparison between the
kernels estimators proposed for the claim amounts. In otherwords,
a good estimator of the claim amounts distribution is one that has
the smallest strong stability bound. Conversely, if the perturbation
is important, it is not sufficient to select a good estimator.



A. Touazi et al. / Insurance: Mathematics and Economics 74 (2017) 78–83 83
Fig. 4. Theoretical density f2(Weibull(1.2, 2)) and its estimated densities.
Fig. 5. Error Γ in function of ϵ with theoretical density f1 and theoretical density
f2 .

Fig. 6. Error Γ in function of ϵ with theoretical density f1 and with its different
estimators.

Fig. 7. Error Γ in function of ϵ with theoretical density f2 and with its different
estimators.
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